飞行航空仪表介绍
为飞行人员提供有关飞行器及其分系统信息的设备。飞行器仪表与各种控制器一起形成人 -机接口,使飞行人员能按飞行计划操纵飞行器。仪表提供的信息既是飞行人员操纵飞行器的 依据,同时又反映出飞行器被操纵的结果。 简史 飞行器仪表的发展与飞行器的发展密切相关。早期飞机上没有专门设计的仪表。莱 特兄弟首次飞行时,飞机上只有一块秒表、一个风速计和一个转速表。早期装在飞机上的还有 其他一些地面用的简陋仪表,如指示高度用的真空膜盒式气压计、指示航向用的磁罗盘、指示 飞机姿态用的气泡式水平仪。1909 年,法国飞行员 L.布莱里奥第一次驾机飞越英吉利海峡时, 机上仍没有任何专门的飞机仪表。那时人们主要靠肉眼观察,在能见度许可的情况下飞行。第 一次世界大战期间飞机仪表有了较大的发展。1916 年英国皇家空军的 S.E. 5 型飞机的仪表板 上已装有 3 种较为可靠的飞行仪表及 4 种发动机仪表。1927 年,美国飞行员 C.A.林白驾机飞越 大西洋,除上述主要仪表外,他的飞机还装备了罗盘、倾侧和俯仰角指示器、转弯倾斜仪和时 钟。1929 年 9 月,美国飞机驾驶员 J.H.杜立特凭借仪表和无线电导航设备安全完成首次盲目飞 行,即仪表飞行,开创了仪表发展的新阶段。从 30 年代开始,一些国家相继规定飞机上必须配 备能完成盲目飞行的一定数量的基本仪表,其中包括空速表、高度表、陀螺地平仪、航向陀螺 仪、升降速度表和转弯倾斜仪。随着大型、多发动机、高速飞机的机载系统逐渐增多,仪表需 求量也日益增长。30~50 年代,飞机仪表有了很大的发展,出现了远读仪表、伺服仪表等新式 仪表。这一时期最重大的进展是出现了各种机电型综合仪表,最有代表性的是指引地平仪、航 道罗盘、大气数据计算机。60~70 年代电子技术、尤其是包括微处理机在内的微电子技术的发 展以及彩色阴极射线管和其他新型电光元件(液晶显示器、发光二极管等)的相继问世,为仪表 数字化、小型化、综合化和智能化提供了条件。数字式大气数据计算机、捷联式惯性导航系统 等带微型计算机的数字测量系统和以平视显示器为代表的电子综合显示仪的出现,标志着飞行 器仪表进入一个新的发展阶段。 分类 飞行器仪表分为飞行仪表、导航仪表、发动机仪表和系统状态仪表 4 大类。
飞行仪表 这类仪表能够正确地驾驶飞机。这类仪表主要有:利用大气特性的各种气压式仪表、利用陀螺 特性的各种陀螺仪表和利用物体惯性的加速度(过载)仪表等。
导航仪表
用于显示飞行器相对于地球或其他天体的位置, 为飞行员或飞行控制系统提供,使飞行器按规定航线飞向预定目标所需要的信息。定位和定向是导航中的两大问题。导航仪表包括导航时钟、各种航向仪表和各类导航系统。导航系统按工作原理分为:航位推算导航系统、 无线电导航系统、天文导航系统、卫星导航系统,以及它们有机结合、互相校正的组合导航系统(见飞机导航系统)
航位推算导航系统按原始信息的性质又分为:利用真实空速推算的自 动领航仪、利用地速推算的多普勒导航系统和利用加速度推算的惯性导航系统。 发动机(动力装置)仪表 用于检查和指示发动机工作状态的仪表。按被测参数区分,主要有转速表、压力表、温度表和流量表等。现代发动机仪表还包括振动监控系统,用于指示发 动机的结构不平衡性和预告潜在的故障。燃油是直接供发动机使用的,故指示燃油油量的油量 表通常也归属于发动机仪表。 组成原理 直读仪表 按照组成原理, 飞行器仪表可分为直读仪表、 远读仪表、 伺服仪表和综合仪表。
很多早期的仪表都属此类,如气压式高度表、空速表、升降速度表、磁罗盘、航向陀螺仪等。直读仪表通常由敏感元件(直接感受被测物理量的元件)、放大传动机构和指示 装置组成,如气压式仪表等。有的直读仪表则直接由敏感元件来带动指示装置,如磁罗盘和航 向陀螺仪。这类仪表简单、可靠,不仅仍大量用于一些低空飞行的轻型飞机上,而且几乎在所 有飞机上都还用它们作为应急仪表。 远读仪表 通常由传感器和指示器两部分组成。 传感器远离仪表板, 指示器则在仪表板上。
大多数发动机仪表均属此类,如发动机排气温度表用热电偶式感温头作为传感器,用毫伏表作 为指示器。还有一些仪表利用远距同步传输系统来实现远读的功能。 伺服仪表 利用伺服系统原理构成的仪表,也称闭环仪表。采用伺服机构能减小摩擦力矩对敏感元件的影响,进行力矩放大,提高仪表测量和指示精度,输出多路信号供各系统使用。 伺服仪表也具有远读的特点。
综合仪表 显示器综合化。 传感器综合化又分为两种方式。一种方式是把原理不同而功用类似的几个传感器组合在一 起,以达到互相校正和提高仪表性能的目的。由磁罗盘和航向陀螺仪组成的陀螺磁罗盘是这种 综合方式的典型例子。另一种方式是把少量公用的原始信息传感器集中起来,通过计算机计算, 输出为数众多的不同的信号。这方面的典型实例是大气数据计算机。这种传感器综合化方式的 优点是大大减少了设备的重复性,减小了体积和重量,又能采用较完善的测量原理,进行多种 误差补偿而提高了参数测量精度。
显示器综合化是把有关的参数集中在一个显示器内显示,这样做不仅能有效地减少仪表数 量、减轻仪表板的拥挤程度、减轻飞行员的目视负担,而且还能得到用单一参数指示器所不能得到的有用信息。早期的组合式高度表、组合式航向仪表,后来的机电型指引地平仪、航道罗 盘以及现代的电子综合显示仪都是显示综合化的实例。 发展趋向 80 年代的航空仪表的特点是利用先进的数字电子技术,进一步向高度综合化和智能化方向发展,并以微型计算机和多路传输数据总线为纽带,把传感器、显示器、控制器 与飞行控制系统、发动机控制系统、火力控制系统等有机地交联在一起,以实现飞行器各系统 之间的高度综合化。采用完善的自检和故障监控、故障告警手段,提高信息测量的精度和可靠性。
数字化综合飞行仪表系统
|